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SUMMARY 
A new finite-element based method of calculating non-linear wave loads on offshore structures in extreme 
seas is presented in this paper. The diffraction wave field is modelled using Stokes wave theory developed to 
second order. Wave loads and free surface elevations are obtained for fixed surface-piercing structures by 
solving a boundary value problem for the second-order velocity potential. Special attention has been given 
to the radiation condition for the second-order diffraction field. Results are presented for three test examples, 
the vertical cylinders of Kim and Yue and of Chakrabarti, and an elliptic cylinder. These results demonstrate 
that early problems with the application of second-order theory arising from inadequate radiation 
conditions have been overcome. 
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1 .  INTRODUCTION 

This paper treats the prediction of non-linear water wave diffraction by fixed offshore structures 
using the finite element method. An offshore structure is designed to withstand the largest wave 
loading that it might experience during its operational life. The effect of wave diffraction on 
hydrodynamic loading becomes significant when a typical horizontal dimension of the structure, 
D say, is of comparable size to the wavelength L, i.e. DJL > 02. 

Viscous forces are small in this regime so the hydrodynamic loading is assumed to arise from 
the action of an ideal fluid. However, even under this hypothesis, closed-form solutions for simple 
configurations cannot be found because the free surface boundary condition is non-linear and the 
location of the free surface at any instant is unknown. These difficulties are overcome in linear 
water wave theory by reducing the free surface boundary condition to a Cauchy-Poisson 
condition on the still-water plane. Considerable success has been achieved using linear theory. 
Analytical solutions are available for simple configurations such as the vertical circular cylinder 
solution of Havelock.' More general structures are analysed using numerical methods, of which 
the boundary integral method based on Green functions2, and the finite element method4, have 
proved most popular. For reviews of this subject see References 6 and 7. 

Model tests have shown that, in general, these methods predict forces well.*9' However, linear 
theory tends to underestimate the diffraction force and it has been noticed that for steep waves the 
error can be significant." A systematic series of model tests on circular cylinders and square 
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caissons by Mogridge and Jamieson". showed that the discrepancy between measured and 
predicted forces increases steadily with wave steepness. 

Stokes wave theory provides a natural framework in which to improve the modelling of wave 
diffraction. Here the velocity potential is decomposed into time-harmonic components and 
expanded in a perturbation series. By this means the influence of the non-linear free surface can be 
represented by a set of successive approximations. No existence or uniqueness theorems exist for 
a 'Stokes' diffraction theory, nor have the conditions under which converged solutions may be 
obtained been established. However, it is reasonable to think that if the incident wave is 
satisfactorily defined then so will be the diffraction wave field, and the series is expected to 
converge because the diffraction wave attenuates as it propagates away from the scattering body. 
The theory does not comfortably extend beyond second order (two terms in the Stokes 
expansion) because the decomposition of the velocity potential into its time harmonics is no 
longer 'synchronized' with its perturbation expansion. This gives rise to time-dependent secular 
terms in the s~ lu t ion , '~  causing it to become unstable. Fortunately, considerable progress can be 
made with second-order theory and most of the literature on non-linear wave diffraction is based 
on this theory. 

Early attempts to solve the second-order problem failed to appreciate that the free surface 
boundary condition is incompatible with the boundary condition on the scattering ~urface. '~ As a 
consequence there is more than one type of wave component in the second-order diffraction field, 
a fact first recognized by M01in.'~ At that time determining the second-order wave force was the 
main objective, and an ingenious method which avoids the need to calculate the second-order 
velocity potential was proposed by LighthillI6 and Molin.' Early difficulties in implementing 
this method have been largely  overcome."^ '* An alternative approach using integral transform 
theory was pioneered by Hunt and Baddour.lg More recently, integral transform theory has been 
used to confirm that the behaviour of the second-order diffraction system in the far field has the 
character described by Molin's asymptotic analysis.' ', 2 o  

Numerical methods for finding the second-order velocity potential directly were hampered by 
the lack of suitable radiation conditions.21 Much effort has been devoted to this issue, and 
although not completely resolved, satisfactory approximations now exist. The latest methods can 
determine the free surface elevation, wave run-up and surface pressure distributions in addition to 
the peak values of wave  force^.^^-^^ 

In this paper a direct method for calculating the second-order velocity potential based on the 
finite element method is presented. The first section develops the boundary value problems for the 
first- and second-order velocity potentials. Then follows a discussion of the radiation boundary 
condition for the second-order problem and how it is implemented in the numerical model. The 
application of the finite element method to this problem is outlined. Results from this method will 
be presented in another paper.25 An expanded version of this paper is available as a report.26 

2. BASIC THEORY 

2.1. The boundary value problem 

The co-ordinate system has its origin at the centroid of the scattering body in the plane of the 
undisturbed water surface. It is convenient to use both a right-handed Cartesian system (x, y, z) 
and a cylindrical polar system (r ,  8, z) in which the z-co-ordinate is taken vertically upwards. 
The fluid domain V is bounded by the free surface, S,, defined by the free surface elevation 
z = S(x, y, t )  where t is the time, the seabed S,, defined by the water depth z = d ( x ,  y), and the 
wetted surface of the scattering body, Sw. The domain is truncated at a 'radiation' boundary S,, 
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which is an imaginary vertical cylinder, radius r = rm, separ8ting the inner region from the far 
field; see Figure 1. The still-water surface is designated by S o .  The incident wave is assumed to 
travel along the positive x-axis. Under the ideal fluid hypothesis, the velocity of the fluid, 
v = (u,  u, w) ,  at a point in the fluid domain, r = (x, y, z ) ,  is related to the velocity potential @(r, t )  
by 

a@ a@ a@ 
v(r, t )  = (- ax ’ - a y  -) aZ (r, t )  = V@(r, t ) .  

The governing equation of the fluid is Laplace’s equation 

VZ@ = 0, 

with no flow across the boundaries of the scattering body or seabed, 

a@ 
- = 0 ,  
an (3) 

where n is the unit normal pointing out of the fluid domain. 

of the velocity potential alone by the equation 
The dynamic and kinematic boundary conditions on the free surface can be expressed in terms 

PQ a@ a@ 
at2 az - + g- + 2V@.V-+~V@*V(V@.V@) at = 0. (4) 

The non-linear free surface condition on SF is reduced to a set of boundary conditions on the still- 
water plane So by the method of The velocity potential @ is expanded in a Taylor series 
about z = 0, giving (E) +- E 2 ( a 2 @ >  - + . . . .  

z = o  2 a 2 2  z = O  
@(x, y ,  z, t )  = @(x, y, 0, t )  + E - 

To express this condition entirely in terms of the velocity potential, E must be eliminated. The free 
surface elevation is found from Bernoulli’s equation applied at the free surface, 

a@ 
- + +(V@)2 + gE = 0 ,  
at 

where g is the gravitational constant. The equation resulting from the substitution of equations (5 )  
and (6) into (4) is made tractable by replacing @ with a perturbation series, 

(7) @ = &@(’) + &2@(2) + 0(&3), 
where the perturbation parameter E is the wave slope of the incident wave. In addition, the 
velocity potential is assumed to be made up of a set of time-harmonic components based on the 
angular frequency of the incident wave, w, together with a non-periodic component. These 
components are related to the perturbation potentials to second order as follows: 

The reduced potentials 4(’)  and # 2 )  are complex-valued functions. The second term on the right- 
hand side of equation (Sb) eliminates the Bernoulli ‘constant’ from Bernoulli’s equation, where 
11;’) is the wave set-down far away from the body. If the seabed is a plane surface at z = -d ,  the 
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wave set-down is 
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- E2 kH 
4 2 )  = E = -  

2k sinh 2kd ’ 2 ’  

and the velocity potentials for the incident wave are6 

4[1)= - j ( - ) -  H g cosh k(z + d) eikx 

2 o coshkd 

4 [ 2 ) =  - i s  3 H c o s h 2 k ( ~ f d ) ~ ~ ~ ~ ~  ( ) sinh4kd , 

9 

(9) 

where H is the height of the incident wave and k is the wave number found from the dispersion 
equation 

These potentials are subtracted from the total potential, leaving a pair of boundary value 
problems for the first- and second-order diffraction potentials 4g), 4g) re~pectively’~ in the form 

o2 = gk tanh kd. (1 1) 

and 
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with 

v = 0 2 / 4 3 .  

A radiation condition is required. This is discussed in Section 3. 
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(14) 

2.2. Hydrodynamic forces 

In this section the formulae for hydrodynamic forces are presented to second order; for details 
of their derivation see Reference26. The hydrodynamic loads on a fixed body due to wave 
diffraction are obtained by integrating the pressure p over the wetted surface of the body, Sw . The 
wetted surface of a surface-piercing body is split into two parts-a mean wetted surface Swo, and a 
variable part AS, which accounts for the changing immersion of the body through the action of 
the wave system: 

S ,  = S,,vAS,. (15) 
S,, is taken to the still-water level, z = 0. 

f = -Is, pndS, 

m = -6, p(r x n)dS, 

where the pressure comes from Bernoulli's equation and the unit normal n points into the body. 
The forces and moments can be expanded in a Stokes series as 

f = &el) + &2F2' + 0 ( & 3 ) ,  (184 

= Re { F(l)e-i"'f}, (W 
( 184 E21(2) = Re { F(2)e-i2mt} + F(2), 

where the second-order force is made up of a steady drift force and an oscillatory force pulsating 
at the double frequency. The first-order force is given by 

The second-order force is made up of contributions from first- and second-order potentials: 

(204 

(20b) 

F(2) = F(2) + F',Z), 

Fk2) = i20p jswo 4% dS. 

The first-order potential is responsible for two components, one due to the dynamic pressure, the 
other due to the change in pressure arising from the varying immersion at the water surface: 

where n, is the vertical component of the unit normal at the waterline. For wall-sided bodies 
n, = 0. 
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The drift forces arise from the first-order potentials only: 

where e, is the unit vector in the vertical direction. The last integral gives a vertical ‘drift’ force due 
to the Bernoulli constant. For wall-sided bodies this value is zero. 

Similar expressions can be derived for the hydrodynamic moments m by replacing n in the force 
integrals by r x n. The lever arm is taken about axes through the centroid of the cross-section at 
the base of the structure. 

Expressions for the free surface elevation to second order may be found in References 6, 9 
and 26. 

3. RADIATION CONDITIONS FOR SECOND-ORDER DIFFRACTION 

Wave problems require a suitable radiation condition to guarantee a unique solution. Since most 
numerical methods are truncated at an outer ‘radiation’ boundary, a numerical boundary 
condition can usually be derived from the analytical form of the radiation condition. For the first- 
order boundary value problem the Sommerfeld condition is the appropriate choice: 

The second-order problem requires more sophisticated treatment. Early work on the subject 
attempted to use a Sommerfeld condition of the form 

where the wave number k”) was interpreted in various ways. However, this equation is not 
adequate, and it was not until Molin devised a physical model for the second-order wave field 
that a satisfactory treatment of the problem was p0ssib1e.l~ In Molin’s model, besides the incident 
wave, there are three propagating disturbances and their associated evanescent wave modes. The 
second-order problem is characterized by the inhomogeneous free surface condition, which 
contains a forcing function a(’). The forcing function is made up of products of the first-order 
potentials (and their derivatives) and so can be separated into three components, 

a@) = up’ + agh + a#, (24) 
where and a%) are defined by equations (13e) and a!;) is similar to agh with 44’) replacing 

The term c# is responsible for the second-order incident wave potential, whilst the last two 
terms are associated with second-order diffraction potentials, denoted by 4gh and 4g) respect- 
ively. The disturbances described by and #@ are called locked waves by Molin and are 
particular solutions of Laplace’s equation satisfying the inhomogeneous free surface condition 
and the seabed condition. The third diffraction wave in Molin’s model is a linear wave (i.e. 
satisfying a homogeneous free surface condition) called the ‘free’ wave. This wave is created at 
the scattering surface owing to a mismatch in surface flux between the incident wave and the 
locked waves. It satisfies a second-order dispersion equation 

(25) 

46”. 

40’ = gk,  tanh k , d ,  
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where k, is the wave number of the free wave. The incident, locked and free wave components all 
decay at different rates with water depth, and so evanescent wave modes are always present in the 
second-order problem, even when there are no evanescent wave modes in the first-order problem. 
These wave modes are associated with the free wave. If evanescent wave modes exist at first order 
they generate extra components in the forcing function a(’), giving rise to non-linear evanescent 
wave modes and disturbances governed by the interaction of the evanescent and progressive wave 
components. The complicated wave field resulting from these interactions is best resolved by a 
numerical method. However, most evanescent wave modes decay rapidly away from the surface 
of the body and so they are not considered further. 

To define a radiation condition at second order, the three components into which the 
diffraction potential has been decomposed are considered separately. The free wave satisfies the 
Sommerfeld radiation condition, equation (23), with k‘” = k, . However, developing radiation 
conditions for the locked waves is closely related to finding asymptotic approximations to the 
particular solutions in the far field. Indeed, such solutions are necessary if an explicit radiation 
condition is to be derived for the total diffraction potential, as discussed in Section 4.2. 

A far-field approximation for the locked wave potentials can be developed using an asymptotic 
expansion in powers of ( l/kr)jt2. This has been done by Sc01an.~’ The first-order diffraction 
potential is written as a series of Hankel functions. A standard asymptotic expansion is 
substituted for the Hankel functions. The free surface forcing function can then be written in 
terms of an asymptotic series in ( l/kr)l’z. Substituting the asymptotic expansion of the locked 
wave potential into Laplace’s equation gives a set of differential equations in the vertical co- 
ordinate which are solved using the free surface and seabed boundary conditions. A similar 
analysis is presented in Reference 26 in which the first-order diffraction potential is retained in its 
original form and its radial derivative is replaced by a cylindrical damper approximation (this 
type of approximation is discussed in Section 4). These equations are more suitable for use with 
the finite element method and the first two terms are given below. 

+ (k) ($cash kDl(Z + d)  +-k A4 2 (Z + d)’ S(kD,(Z + d)) 
4 

+-k z (Z+d)2COShkDI(Z+d) ) $1 4~ + (k) (5COSh kDl(Z + d) 
4 U 

where 

and 

kDl = k J ( ~ + ~ c o s ~ )  = 2kc0~8J2.  

The function S has been defined to ensure S(0) = 1, so avoiding unbounded coefficients near 
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and 

o( 6) = kDI  sinh kDId - 4~ C O S ~  kDId, 

k2 d 
a2(8) = ~ [( 1 -4vd) S(kDId) + cosh kDId], 

4 6 )  

The other locked wave diffraction potential is given by 

( $ ) o g A  = B , c o s h 2 k ( ~ + d ) ( o g ) ) ~ +  [B2cosh2k(z+d) 

+ B3k(z+d)sinh2k(z+d)] (&))*, 

with 

3v 
- 8k2 sinh4 kd ' 

B -  

1 3[(1-4vd)sinh2kd +2kdcosh2kd] 
4v sinh2 kd + 64k sinh6 kd 

€3, = i  , 

3v 
16k2 sinh4 kd ' 

B, = i 

The next section explains how the radiation condition is used to derive a numerical boundary 
condition for use with the finite element method. 

4. CYLINDRICAL DAMPERS 

4.1.  High-order dampers 

On the radiation boundary a boundary condition which ensures the diffraction wave has an 
outward flux is necessary. In the present formulation the cylindrical damper approximation of 
Bayliss and Turkel is used, which is explained in more detail in Reference 28. 
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The first-order cylindrical damper approximation to the radiation condition is 

~ a4g) - ( ik-&)$g) .  
ar 

a4g) 
ar 

The second-order cylindrical damper is 

a24g) 
(294 (1) (1) -- - P 1  4 D  +Pi1)-@-? 

35 1 

(28) 

1 
(294 (1)  - 

P 2  - 2/r - 2ik ' 

where s is the tangential co-ordinate, given by s = re, and on the radiation boundary r = rm.  

4.2. Application of dampers to second-order diffraction 

The radiation condition for the second-order velocity potential is derived using the asymptotic 
far-field equations for the locked waves, equations (26) and (27). The asymptotic locked wave 
equations can be written as 

and their radial derivatives as 

The radial derivatives of 411) and 4g) are substituted in equation (31). The radial derivative of 
4 g )  is approximated by the first-order cylindrical damper, equation (28), giving 

The free wave satisfies the first-order cylindrical damper 
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The normal velocity of the second-order diffraction potential on the radiation boundary is 

Writing 4g& in equation (34) in terms of the other diffraction potentials gives 

5. VARIATIONAL EQUATIONS 

The variational equations for the boundary value problems, equations (12) and (13), are given in 
terms of the complex energy functionals E(' ) (&))  and E(2)(4g)):29 

where pi1,$ are the transmission coefficients given by equations (29) and the second-order 
transmission coefficients are given by 

pi2) = -ik, + 1/2r, 

Sg,) = -ik, + ik( 1 fcose), 

= -ikf + i2k - 1/2r. 

These equations are solved by minimizing the functionals with respect to their velocity potentials. 

6. FINITE ELEMENT EQUATIONS 

An isoparametric finite element formulation is used to solve the variational equations (see e.g. 
Reference 29). In this formulation an element in a 'local' co-ordinate system, p = ( c ,  q ,  c), is 
mapped to the curvilinear element in the global co-ordinate system, r = (x, y, z), by means of a set 
of 'shape' functions, IVY) (p) ,  which have as their coefficients the global co-ordinates of the 
element nodes r p .  For an element with n nodes, 

n 

j =  1 
r = C (p ) ry )  = (N@))T (r(e)}. (37) 

4(r )  = { { 4")). (38) 

The velocity potential $(r)  is distributed over the element in the same way: 
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The nodal values of the velocity potential, +y), are the unknown coefficients in the final matrix 
equation. 

The fluid velocities are found by taking the grad of the velocity potential. The Jacobian matrix 
[ J ]  relates grad in local co-ordinates, V, = ( a / a t ,  a laq ,  a /a [ ) ,  to grad in global co-ordinates, 
v = (a /ax ,  slay, a /az) :  

= [B"'] { f#J'"}, (39) 

[ J ]  = [v,We)] {de)}. (40) 

where the Jacobian matrix is 

Evaluating forces on the wetted surface gives rise to integrals involving a Jacobian matrix that is 
not square. The treatment of this case is discussed in Reference 26. 

The usual Co shape functions are used in the present work; these can be found in many 
 textbook^.^' The nodal values of the velocity potentials, { c/$)} and {~$a)}, are found from the 
complex energy equations (36). Each integral in these equations is the sum of the corresponding 
element equations. For example, if there are N elements making up the fluid domain, then the 
total complex kinetic energy is 

r N 

where the element matrix is 

The remaining integrals in equations (36) are transformed in a similar way and combined together 
to give the 'system' equation for the complex energy. Minimizing the complex energy gives a pair 
of matrix equations for the first- and second-order diffraction potentials, 

[K'")] {4g)}  = {b'")} ,  n = 1 and 2, (43) 
which is solved using Gaussian elimination. 

these can be evaluated once the velocity potentials have been found. 
Numerical approximations to the force integrals are derived using equations (38H40), and 

7. RESULTS 

In this section the hydrodynamic forces on and free surface elevation around three configurations 
are presented. Until recently, the only results given in many papers were the hydrodynamic forces 
on the body. The majority of model test data give the total force, usually the absolute or average 
peak forces. There have been some attempts to measure the second-order force directly, which has 
the advantage that it removes most other non-linear effects from consideration. This will make 
the checking of second-order codes currently available or under development much easier. 
Nevertheless, the main test for the usefulness of the code is its ability to predict peak forces 
accurately. In the presentation of results the forces, elevations and pressures are converted to 
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coefficient form. Forces and moments are normalized according to 

$pgaZ H ’ a p g a H Z ’  

F(1) F(2) 
F(1) ~ F(2) _____ 

The surface elevation is normalized according to 

where p is the water density and a is a characteristic horizontal dimension of the structure. For 
the circular cylinder a is the radius; for more general surface-piercing structures it is given by the 
square root of the waterplane area of the body divided by n. 

In this paper three examples are treated. The first is the circular cylinder in shallow water 
investigated by Kim and YueZ2 and further studied by Boudet and S~olan ,~’  Scolan and MolinZ3 
and C h a ~ . ’ ~  There are no model test results for this particular cylinder, but a very similar cylinder 
was tested by Chakrabarti’, for which the peak forces have been presented over a range of wave 
frequencies. This is the second example. The last example is an elliptic cylinder, for which linear 
diffraction results have been obtained from a boundary integral code at Newcastle. Further 
results will be presented in a future paper.25 

7. I .  Preliminary checks 

Before testing the code on the second-order diffraction problem, a model for a second-order 
propagating Stokes wave on a two-dimensional vertical s h e  was studied. Apart from testing the 
integrity of the code, this model allowed different mesh gradings to be tried. In this model the flux 
was prescribed at the entrance boundary and a plane damper used to transmit the wave at the exit 
boundary. Formulated in this way, the wave propagation model is analagous to the diffraction 
problem. The position of the exit boundary was varied and it was found that the second-order 
solution tended to diverge along the path of propagation if fewer than 10 quadratic elements per 
wavelength were used to model the wave. Best results were obtained if the mesh spacing in the 
vertical direction was similar to the horizontal spacing. These guidelines were adopted in the 
diffraction work. In view of the tendency of the second-order potential to decay slowly with 
depth, it was decided to give the mesh equal spacing in the depth. 

The diffraction problem was modelled in the following way. The first- and second-order 
boundary value problems are solved on the same mesh, which takes advantage of the symmetry 
about the centre-plane (since all the test examples are symmetrical). The meshes are based on a 
polar co-ordinate system with a circular outer boundary; the outer boundary is placed between 
one and two wavelengths from the surface of the body. A typical mesh has 10 elements per 
wavelength in the radial direction, and 9 elements in the circumferential direction. The number of 
elements in the vertical direction is chosen to give a similar spacing to the radial mesh. The 
spacing of nodes is usually constant in each co-ordinate direction. 

The FORTRAN 77 code was developed on a SUN 3/50 workstation. A more powerful 
computer, a GOULD NP1, was used to study the convergence of the method, and all results in 
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this paper have been obtained using this machine. However, the reference test example, based on 
a mesh containing 10 x 9 x 4 quadratic serendipity elements, could be run on a SUN (or similar) 
workstation. 

7.2. Kim and Yue’s cylinder 

The general particulars for this cylinder are: 

cylinder radius a = 10 m 
wave depth d = 10 m 
wave height H = 2 m 
wave periods T = 5.794, 4.4864 and 3.7917 s. 

The acceleration constant is g = 9.807 m s-’ and the water density is p = 1025 kgm-3. The 
choice of wave periods gives diffraction parameters va = 1.2, 2.0 and 2.8. 

The simplest way to assess convergence of the results is to investigate the values of the second- 
order forces for a variety of mesh configurations. The reference mesh is a half-annulus with 
10 x 9 x 4 quadratic serendipity elements in the ( I ,  8, z)-directions respectively (Figure l), 
where the radiation boundary is located at I = 56.0, 35.0 and 32.3 m, corresponding to va = 1.2, 
2.0 and 2.8 respectively. The radiation boundary for va = 2 is consistent with Scolan and 
Molin’s choicez3 since the wavelength is 30.4m. The forces and moments from the reference 
mesh are compared with the numerical values calculated by Kim and Yue in Table I. For each 
value of the force and moment the first line gives Kim and Yue’s value and the second the finite 
element force prediction. The final line is the value of the total second-order force obtained by 
Kim and Yue using a semi-analytical ‘indirect’ method for calculating forces. This value is 
probably more accurate than the numerical value. 

The convergence of the finite element computations is investigated by focusing on the case 
va = 2. Four issues have been considered: the fineness of the mesh, the proximity of the radiation 
boundary to the body, the use of simpler approximations to the radiation boundary condition, 
and the use of other element types. The influence of the mesh discretization was assessed by fixing 

Incident Wave Direction 

\ i l & l l  / 

Figure 1. Co-ordinate system and labelling convention 
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Table I. Complex force and moment coefficients: FE versus Kim and Yue." For each force the first 
line is Kim and Yue's numerical result and the second line the finite element result using a 10 x 9 x 4 

quadratic serendipity mesh with the radiation boundaries at 560, 35.0 and 32.3 m respectively 

Diffraction parameter vu 

1.2 2.0 2.8 

F:;) K&Y 
FE 

0708 -2'531 
0.710 -2.532 

0.826 
0.827 

-1.648 -0305 
- 1.648 -0.309 

2.258 -0.135 
2.249 -0.125 
0610 -0440 
0.601 -0.434 
0611 -0.444 

M;') K&Y 

Mr) K&Y 

M$) K&Y 

FE 

FE 

FE 
M$) K&Y 

FE 

M Y )  K&Y 

M$& K&Y 

FE 

0.401 -1.431 
0.401 -1.432 

0870 
0.871 

- 1.485 -0.382 
- 1.484 -0.386 

1.200 -0302 
1.193 -0.294 

- 0.285 - 0.684 
-0.291 -0-680 
- 0.284 - 0.688 

-0264 -1.606 
-0.264 -1.607 

0.71 1 
0.71 1 

-1.076 0.846 
-1.096 0.850 

1.973 -1.830 
1.977 -1.831 
0897 -0984 
0.882 -0982 
0878 -0.986 

-0.165 -1.003 
-0.165 -1.004 

0.823 
0.823 

-1.044 0.797 
-1.064 0801 

1.042 -0990 
1.045 -0.989 

-0.002 -0.193 
-0-019 -0188 
-0.022 -0192 

- 0,745 - 0.742 
-0.746 -0743 

0.655 
0.656 

0.887 1.345 
0.893 1.342 

-2.208 -3.604 
- 2.220 - 3.601 
- 1.321 -2-259 
-1.327 -2259 
-1.317 -2265 

-0510 -0509 
-0.511 -0510 

0.778 
0.778 

0.829 1.272 
0836 1.269 

- 1.360 - 2.013 
- 1.367 - 2.010 
-0.531 -0.741 
-0531 -0-741 
-0.525 -0.744 

Table 11. The effect of the number of elements in the radial direction; vu = 2, r m  = 35 m, N x 9 x 4 
quadratic serendipity mesh 

K&Y N = 10 15 20 

FLY 1.972 - 1.835 1'97733 - 1.83122 1.97578 - 1.83148 1.97553 - 1.83132 
M$) 1.041 -0.993 1.04518 -0.98870 1.04369 - 098882 1.04345 -098866 

the overall dimensions of the mesh and systematically increasing the number of elements in each 
co-ordinate direction in turn, keeping the number of elements in the remaining co-ordinate 
directions constant. The values of the second-order force components due to the second-order 
velocity potential are used as the basis of comparison. The results of this study are contained in 
Tables 11-IV. In all three tables the first column is the semi-analytical result obtained from Kim 
and Yue. The effect of increasing the number of elements in the radial direction is slight (Table 11). 
Similarly, the force is little affected by changing the circumferential distribution of elements 
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Table 111. The effect of the number of elements in the circumferential direction; va = 2, rm = 35 m, 
10 x N x 4 quadratic serendipity mesh 

~ ~ 

K&Y N = 9  12 15 

F I;i' 1.972 - 1.835 1.97733 - 1.83122 1.97600 - 1.83210 1.97628 - 1.83191 
MS' 1.041 -0.993 1.04518 -0.98870 1'04429 - 0.98920 1.04448 - 0.98909 

Table IV. The effect of the number of elements in the vertical direction; va = 2, I ,  = 35 m, 10 x 9 x N quadratic 
serendipity mesh 

K&Y N=4  5 
~~ 

6 7 
~ ~ 

F $? 1.972 - 14335 1.97733 - 1'83122 1.97562 - 1.83138 1.97532 - 1.83150 1.97525 - 1.83156 
M f2 1 9 4 1  -0.993 1.04518 -0.98870 1.04367 -0.98875 1.04341 -0.98884 1.04335 -0.98889 

Table V. Comparison of reference finite element results against results using finer meshes, other element 
types and simpler radiation conditions; va = 2, rm = 35 m except for the 15 x 12 x 6 quadratic serendipity 

mesh where T ,  = 47.5 m 

Complex force coefficients 

Quad. ser. 
1 0 x 9 ~ 4  
Quad. ser. 
15 x 12 x 6 

P1. damp. 
1 0 x 9 ~ 4  
1st rad. 
1 0 x 9 ~ 4  

Quad. Lag. 
1 0 x 9 ~ 4  
Cub. ser. 
7 x 6 ~ 3  

Cub. ser. 
1 0 x 9 ~ 4  

- 0.264 
- 1.607 
- 0.264 
- 1.607 

- 0.268 
- 1.589 
- 0.266 
- 1-607 

- 0.264 
- 1.607 
- 0.264 
- 1.608 

- 0'264 
- 1.607 

0.7 11 - 1.096 
0850 

0.849 
0.711 - 1.094 

0.714 - 1.083 
0.940 

0.709 - 1.094 
0-870 

0.711 - 1.095 
0.850 

0712 - 1.097 
0.849 

0.71 1 - 1.094 
0.850 

1.977 

1.970 

1.943 

1.988 

1.977 

1.983 

1.973 

-1'831 

- 1.838 

- 1.952 

- 1-887 

- 1.831 

- 1.820 

- 1.832 

0.882 0.43 
- 0.982 

0.876 0.27 

0.860 2.39 

- 0'989 

- 1-012 

- 1'018 
0.894 2.71 

0.882 0.43 
-0982 

0.886 1.29 
-0.971 

0.878 0.23 
-0'983 

(Table 111) or the vertical distribution (Table IV). This shows that the sensitivity of the results to 
increasing mesh refinement is smaller than the discrepancy between different numerical solutions 
of the same boundary value problem. The effect of an overall finer mesh with radiation boundary 
taken further out is shown by the second entry to Table V, where a 15 x 12 x 6 mesh is used with 
I, = 47.5 m. The percentage error in the second-order force, in the final column of Table V 
is calculated from Kim and Yue's semi-analytical value: 
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The effect of moving the radiation boundary on the values of the second-order force is 
illustrated in Figure 2. The percentage error in forces and moments arising from the second-order 
potential alone are calculated from Kim and Yue's values in the same way as AL2) defined above 
(replacing Fi2)  by F(x" and M1;?,' respectively). The radiation boundary is moved from r / a  = 1.5 to 
r / a  = 4.0 in 0.5 steps. The number of elements per wavelength remains constant, so the radiation 
boundary is moved outwards by adding new layers of elements. Convergence of the absolute 
value of the force to a level of accuracy suitable for engineering calculations (error less than 1 YO) is 
achieved within half a wavelength ( r l a  = 2.0); the phase converges more slowly. However, the 
circular cylinder is unlikely to provide the most demanding test of the radiation condition, and 
setting the radiation condition at one wavelength from the surface of the body has been adopted 
as a useful rule of thumb provided the water depth is not great. In this work the practical limit on 
the size of problem is the number of finite elements in the mesh, which restricts us to depth ratios 
up to d l a  = 3. 

Two other checks were made on the radiation condition based on the standard mesh. In the 
first the quality of the cylindrical damper was assessed by replacing the cylindrical dampers in the 
first- and second-order diffraction problems with plane dampers. The plane damper is derived 
from the equation 

a+,/an = ik&, on S, ,  

where k is the appropriate wave number. In the second the asymptotic equations for the locked 

m 
W 
2 

d 
.r( 

I3  

12 

1 1  

10 

9 

a 
7 

6 

1.0 1.5 2. 0 2. 5 3. 0 3. 5 4. 0 

?-/a 

Figure 2. Rate ofconvergence of forces with proximity of the radiation boundary for circular cylinder d / a  = 1.0, va = 2.0. 
Error in the second order horizontal force, lF$g/F$g,lM - 1 I x 100% (-). Error in the second order overturning 

moment, lhf$~)/hf~).lM - 1 I x 100% (----) 
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waves, in which the terms o( 1 / k r )  were dropped, were applied and the first-order calculation used 
the simple cylindrical damper, equation (28). These results appear in the third and fourth lines of 
Table V. 

Table V also contains comparisons with two different element types. These are the quadratic 
Lagrange element and the cubic serendipity element. The meshes have the same element 
discretization as the reference mesh. Although there is no difference in the results for the quadratic 
Lagrange compared to the quadratic serendipity, they have been found to converge more quickly. 
Nevertheless, fewer degrees of freedom are required for the serendipity elements, which makes 
their use more cost effective. The results from the cubic elements show that for the same number 
of elements as used in the quadratic mesh the results are very good, but for about the same 
number of degrees of freedom the results are less good. This may be surprising in view of the 
superior interpolating qualities of the cubic, but may be related to lack of mid-face nodes in 
serendipity elements which compromises their ability to interpolate oscillatory functions. 

The properties of the diffraction field that depend on the second-order potential include the free 
surface elevation and pressure distribution. The free surface elevation at the waterline of the 
cylinder is shown in Figure 3, where the curves come from a 10 x 16 x 4 quadratic serendipity 
mesh and the symbols are Kim and Yue's values extracted from Figure 7 of Reference 22. Notice 
that the wave set-down varies around the cylinder. 

Figure 3. Modulus of the free surface elevation for circular cylinder, d / a  = 1.0, va = 2.0. Comparison of finite element 
(FE) results with those of Kim and Yue" (K&Y). FE mesh 10 x 16 x 4 quadratic serendipity elements, r,/a = 3.5. First 
order elevation, Iq")l: FE. (- - - - -), K&Y ( A ). Second order elevation, lq(')l: FE. (---), K&Y ( x ). Second order elevation 

based on 4('), lq\*)l: FE. (-), K&Y (V) .  Wave set-down, $'): FE. (---), K&Y (0 )  



360 P. J. CLARK ET AL. 

An insight into the behaviour of the second-order diffraction potential can be gained by 
decomposing it into the components 4gA, 4gi and on the radiation boundary using the 
asymptotic equations for the locked waves. The imaginary parts of the component diffraction 
potentials on a circular contour r = 35 m, lying in the z = 0 plane, are plotted in Figure 4, which 
is calculated using the reference mesh. These results compare well with Figure 3 of Reference 23. 
The plot shows that the second-order diffraction potential is dominated by the locked wave on 
the weather (up-wave) side of the cylinder and by the free wave on the lee (down-wave) side. 

The manner in which the dominant locked wave potential on the weather side gradually yields 
to the free wave on the lee side can also be seen from the free surface elevation around the cylinder 
due to 48) alone, denoted t@. A contour plot of r& is given in Figure 5,  in which the upper half 
is the real part while the lower half is the imaginary part; the outer boundary is located at 
r = 35 m. The plot shows the characteristic U-shaped diffraction pattern girding the cylinder 
found in Figure 4 of Reference 23 (the outer boundary is r = 70 m in this figure). The weather side 
is comparatively wave-free and in this region the asymptotic equations indicate that the locked 
wave decays slowly with depth and does not behave much like a propagating wave. The region 
150" > 8 > 80" exhibits strong locked wave influence, with the crests fragmented into a regular 
pattern of island structures, indicating interference between the locked and free wave compon- 
ents. Continuing around the cylinder, the diffraction pattern undergoes a change in which the 
locked wave field gives way to a region dominated by the free wave on the lee side of the cylinder. 
This is indicated by the shorter wavelength of the free wave. 

0.7 -I c 

0. 6 1 
0. 5 

0. 4 

(2) 0. 3 
- I 4 ? k J  ) 

0. 2 

0. 1 

0. 0 

-0. 1 

-0. 2 

-0. 3 

-0. 4 

-0. 6 

V 

-0 .7 1 L 
0 90 180 

e ( k s )  

Figure 4. Imaginary parts of the second order diffraction potential on the radiation boundary r,/a = 3.5, z = 0.0 for the 
circular cylinder d/a = 1.0, va = 2.0. FE mesh 10 x 9 x 4 quadratic serendipity elements. The potentials have been 
multiplied by - 1 to allow comparison with Figure 4 of Reference 23. -Im{ I#)] (-), -Im{,$& + 4gA) (---), 

-W4k%f21(---) 
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Incident wave 

Figure 5. Contour plot of the free surface elevation due to r$g) around circular cylinder d / a  = 1.0, va = 2.0. FE mesh 
10 x 9 x 4 quadratic serendipity elements, r,/a = 3.5. Each box is a finite element. The upper half is the real part of the 

surface elevation and the lower half the imaginary part. The contours are drawn at intervals of 0.5 

Another perspective on the behaviour of the second-order velocity potential is gained by 
looking at the corresponding distribution of pressure on the surface of the body. The slow decay 
of the second-order pressure has been found in model tests by Hogben et in which pressure 
pulses at the second harmonic were detected at the foot of a cylinder undergoing wave tests. 
Consequently, second-order forces reach much deeper than the first-order ones. It has been 
suggested that the second-order pressure acting on the underside of the buoyancy chambers of a 
tension leg platform, at a frequency close to one of the platform’s resonant frequencies, is 
responsible for the phenomenon of ‘springing’. The unusual behaviour of the second-order 
pressure is illustrated in Figures 6 and 7, which apply to the diffraction parameter va = 1.2. 
Figure 6 shows the decay with depth of the modulus of the second-order pressure owing to the 
total second-order potential. The curves are the finite element results obtained from a 10 x 16 x 4 
quadratic serendipity mesh, r ,  = 56 m, and the symbols are the values taken from Figure 4 of 
Reference 22. Figure 7 shows the corresponding contour plot of the second-order pressure over 
the surface of the cylinder. The horizontal axis is located at the base of the cylinder and the 
abscissa is the circumferential co-ordinate. The left-hand edge is the lee side of the cylinder and 
the right-hand edge the weather side. As can be seen, there is a pressure peak near the midpoint of 
the cylinder. This indicates that the second-order velocity potential does not decay monotonically 
with depth. 

7.3. Chakrabarti’s cylinder 

The particulars of this cylinder are: 
a = 1.0287 m 
dla = 1.16 
H l d  = 0.225 
ka = 0-8565, 1.1739, 1.311, 1.4509 and 1.6905 

where ka is the diffraction parameter based on wave number. 
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Figure 6. Modulus of the second order pressure due to +I2) on the surface of circular cylinder d / a  = 1.0, va = 1.2. FE 
mesh 10 x 16 x 4 quadratic serendipity elements, r , / a  = 5.6. FE results are shown for 0 = 0" (- - -), 0 = 45" (---), 

0 = 90" (---), 0 = 135" (- - - - -), 0 = 180" (-), the symbols (0) are taken from Reference 22 

0.0 90.0 100.0 

0 ( d e d  

Figure 7. Contour plot of the modulus of the second order pressure due to +"I on the same cylinder as shown in Figure 6. 
The free surface is at the top. The incident wave travels from right to left. Each box corresponds to a finite element. The 

contours are drawn at intervals of 0.25 

The first- and second-order forces and the peak forces are presented in Table VI. The final 
column contains Chakrabarti's measured values." Figure 8 shows a plot of the peak forces, 
comparing the calculated and measured values superimposed on the linear force curve. 

The meshes used for the calculations consisted of 20 x 9 x 5 quadratic serendipity elements, 
with the radiation boundary taken two wavelengths from the surface of the body. There are 
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Figure 8. Diffraction force on Chakrabarti and Tam's cylinder', d / a  = 1.16, H / d  = 0.225. FE mesh 20 x 9 x 5 quadratic 
serendipity elements, r,/a = 1 + 4n/ka.  The figure shows the linear force prediction (-), compared with the FE peak 

force prediction ( V )  and the measured peak forces ( 0 )  

Table VI. Results for Chakrabarti's cylinder 

Complex force coefficients 

FLZ' Fcalc Fmea, ka Fi') FiZ) 

0857 1-260 -3.540 0.990 0'218 -1.906 4.04 4.23 
1.174 1.049 -2'993 0.874 0.527 -0.522 3.28 3.54 
1.31 1 0.835 -2.746 0.797 0.868 -0'246 2.90 3.29 
1-451 0-600 -2512 0.742 1.185 -0075 2.62 2.80 
1.690 0'214 -2.144 0.704 1.474 -0.188 2.25 2.25 

noticeable discrepancies between the measured and calculated forces, particularly in the middle 
range of wave numbers. In this middle range two effects combine to cause a small contribution 
from the second-order force. First, the magnitude of the second-order force falls. This is because 
the contribution from the first-order potentials opposes the contribution from the second-order 
potential, leading to substantial cancelling. Secondly, the first- and second-order forces become 
anti-phased so that there is little reinforcement of the peak force from the second-order part. 
Perhaps the higher-order wave forces make a more significant contribution. Another possibility is 
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the effect of tank blockage in wave diffraction model tests. Hung has shown that these can cause 
large discrepancies in force values at particular f r eq~enc ie s .~~  However, at this stage all we can 
say is that the non-linearities measured by Chakrabarti cannot be fully explained by second-order 
diffraction theory. 

7.4. Elliptic cylinder 

There are no numerical or experimental results for this example; it is included to give a new set 
of results. The choice of particulars of the cylinder, presented below, is influenced by the elliptic 
island of Yue et 

semi-major axis a = 2.0 m 
semi-minor axis b = 1 *O m 
water depth d = 2.0 m 
wave height H = 2.0 m 
diffraction parameters ka = 1.0, 2.0 and 3.0.t 

The mesh is made up of 10 x 9 x 8 quadratic serendipity elements and the radiation boundary 
is located at one wavelength from the surface of the longer axis. The incident wave travels along 
the same axis. The first- and second-order forces and peak forces are given in Table VII. The first- 
order force calculated by the boundary integral code MATTHEW, developed by Hearn at 
Newcastle University, is shown for comparison in the first line of this table. The free surface 
elevation around the waterline of the cylinder is plotted in Figure 9 and a contour plot of the 
surrounding free surface elevation due to the second-order potential alone, q g j ,  is given in 
Figure 10. 

Table VII. Complex force and moment coefficients for elliptic cylinder 

Diffraction parameter ka 

1.0 2.0 3.0 

F$1) 0234 -1.415 -0.046 -0'836 - 0.25 1 - 0.230 
0.231 -1.414 -0046 -0.837 - 0.250 - 0.23 1 

Fjf' 0274 0.180 0177 

F $2) -0.184 -0.243 -0.381 0.334 0453 0.107 
FLY 0.141 -0.845 0.535 -0.472 - 0.997 - 0.303 
F $2) -0.043 - 1.088 0154 -0.139 -0.544 -0.195 

MI" 0126 -0.761 -0029 -0.518 -0'175 -0.161 
0.124 -0760 - 0.029 - 0.5 18 -0.174 -0.161 

@2) 0.255 0.210 0213 

M $$) -0156 -0367 -0.363 0.322 0425 0111 

M ;i' 0.060 -0.553 0.302 -0.316 - 0.634 - 0.09 1 
MI" - 0.096 - 0.920 -0061 -0.006 -0209 0020 

t The characteristic dimension a is the length of the semi-major axis. 
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Figure 9. Modulus of the free surface elevation around an elliptic cylinder b / a  = 0.5, d / a  = 1.0, ka = 2.0. FE mesh 
10 x 9 x 8 quadratic serendipity elements, r , / a  = 2 + 271. First order elevation 1tf)I : (- - -  - -  -). Second order 

elevation lq(’)l: (- - -). Second order elevation due to #’), Iq\’)l: (-). Wave set-down i j l ’ ) :  (---) 

Incident wave - 

-0.8 O. 

Figure 10. Contour plot of the free surface elevation due to 4g) around elliptic cylinder b / a  = 0.5, d/a = 1.0, ka = 2.0. 
The characteristic dimension a is the semi-major axis of the ellipse.. FE mesh 10 x 9 x 8 quadratic serendipity elements, 
r , / a  = 2 + 271. The upper half is the real part, the lower half the imaginary part. The contours are drawn at  intervals of 0.4 
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8. CONCLUSIONS 

Methods for calculating non-linear wave loads on offshore structures using second-order Stokes 
wave theory are becoming well established nowadays. The ‘indirect’ methods of Lighthill’ and 
Molin’ for obtaining second-order forces have been verified by recently developed ‘direct’ 
methods.22-26 The novel aspect of this paper is the application of the finite element method to the 
solution of the second-order boundary value problem. The results presented here have been 
compared with those of similar work based on Green’s  function^.^^-^^ The original obstacle to 
the development of direct methods, i.e. a suitable radiation condition, has been overcome in this 
work by an adaption of the far-field equations for the locked wave diffraction potentials derived 
by based on Molin’s original analy~is.’~ Kim and YueZ2 and ChauZ4 have developed 
the radiation condition in a different form, yet there is a large measure of agreement between these 
different numerical procedures and the finite element results presented here. This greatly increases 
confidence in all these methods. Designers of offshore structures can have confidence in the 
application of non-linear diffraction theory as a result of these latest developments. Of particular 
concern to designers are the low-frequency resonant motions caused by non-linear wave 
excitation, and wave upwelling effects arising from multi-body interaction within compliant 
floating systems such as tension leg platforms. In addition, the finite element method is 
particularly suitable for extension to wave diffraction problems involving non-uniform water 
depths and stratified fluids. 
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